

Peter Childs

DATE Unrivalled Gas Detection

Introduction to Ion Science

- Leading manufacturer of PID sensors & Instruments
- Private Company
- Founded in 1989
- Based in Cambridge U.K.
- Group Revenue > £16m
- Employees 120

Global Coverage

Ion Science Inc - Houston

Ion Science Ltd – Cambridge U.K.

Ion Science Germany, France & Italy

Ion Science China – Shanghai

ION Science

Continuous Ground Gas Monitoring

Peter Childs

ionscience.com

Unrivalled Gas Detection

Ground Gas risk

The problem

Various hazards can arise depending on the gas released

Soil / Ground Gas risk

The problem

Ground gas can originate from natural and various forms of human activity

- Land fill waste
- Abandoned coal mining
- Shale gas production
- Contaminated land
- Pipeline leaks
- Coal bed methane
- Natural Ground Gas

Abbeystead 1984

- Natural methane from coal seams released into water supply tunnel
- Pushed into valve house by start of water pumping
- Ignition source not known, but visiting group from local community present
- 16 killed by explosion

Gas-leak residents win \$23.5m payout Brookland Greens Estate

- Hundreds of residents affected by a methane gas leak in Cranbourne will share more than \$20 million in compensation paid by Casey Council and the Environment Protection Authority.
- A settlement has been reached in the class action by 750 residents and individual property owners will soon be contacted and told how much of the \$23.5 million they will receive.
- In September 2008, hundreds of residents of the estate were forced to evacuate after dangerously high levels of methane gas were detected escaping from a disused landfill site in Cranbourne

Loscoe 1986

House exploded at 6.30 24th March

22 Oct 2018

Loscoe Public Inquiry following House Explosion in 1984

From CIRIA 130, 1995 (construction industry research and information association)

ionscience.com

22 Oct 2018

Soil / Ground Gas risk The problem

Variations in environmental conditions cause variations in the rate gas is emitted. These conditions are:

- Ambient temperature
- Ambient pressure
- Rain and snow
- The water table

Spot check monitoring is therefor likely to miss some/maybe all hazardous events!

Objectives of ground gas monitoring

- Determine the true subsurface gas regime
- Predict how this may change in the future

Currently achieved by:

Discrete periodic spot measurements of gas concentrations and the gas regime is inferred

Effect of Sampling frequency on observed gas regime

- Spot sampling on these dates show no methane
- Spot sampling on these dates show gas, up to 40% !

GASCLAM

The world's first continuous, borehole gas monitor

Key features:

Specifically designed to detect ground gas from boreholes

Continuously monitors methane, carbon dioxide, oxygen, hydrogen sulfide, VOCs and atmospheric pressure

- Can be deployed for over 3 months
- Intrinsically safe so can be used in explosive environments
- Discrete installation
- Telemetered data from real time reporting

Process responsible for controlling ground gas concentration

Data from a borehole between a house and landfill

22 Oct 2018

Soil / Ground Gas risk

Example data – Closed landfill adjacent to housing

Soil / Ground Gas risk

Example data – Closed landfill adjacent to housing

A high profile case – Caudrilla Operations, Blackpool UK - 2012

- Faded glory of a major holiday destination
- Now area of high unemployment
- Underlain by >2000 ft Bowland Shale Potential for hydrofracking

HydroFracking

22 Oct 2018

HydroFracking - issues

Drinking Water Aquifer Impervious Shale Layer Fracture with Proppant Remaining

PROTECTIVE MEASURES ARE IN PLACE

NOT TO SCALE

Benzene has been used in frack fluids – if methane can escape so can benzene!

Cuadrilla Case Study - Blackpool

- The sites are close to Blackpool, surrounding towns and farms
- Therefore operations are under particular close scrutiny by local residents, politicians and regulators
- Cuadrilla have adopted best practice in managing and drilling fracking operations in close liaison with regulators
- However, the need to win over and maintain public opinion by going beyond current best practice has been an important element of their approach.
- This includes high quality continuous monitoring of ground-gas in the near surface soils at their well pad sites before, during and after fracking

Establishing baseline data

22 Oct 2018

ionscience.com

Cuadrilla installed a network of 21 GasClams to monitor their current exploration sites

• Mark Miller, CEO of Cuadrilla, said: "The monitoring device will allow us to collect background gas levels and compare them between before, during and after our operations.

Continuing with our open and transparent communications with the community, we will make this data available to the public and include this on the Cuadrilla website."

2018 – Hydraulic fracturing can now go ahead based on solid understanding of the site Continuous monitoring is a condition

Hierarchy of Cost-Benefits

Unmanned data Collection

Efficiency savings in meeting existing legislative requirements

Reduced uncertainty about gas regime

Pre and Post development condition monitoring with telemetry

Design appropriate remediation measures

Demonstration of low risk by monitoring rather than as a consequence of remedial engineering

Future -Proactive

Former Petrol Station site

22 Oct 2018

House Adjacent to Petrol Station

Water treatment facility

- Treats water for 1.5 Million people
- Suspicions that industry is illegally discharging waste
- PID has been employed to monitor for discharge
- However;
- Methane and H2S will affect a PID reading but if there affects are understood and the are monitored using different sensor then a 'true' VOC reading can be obtained

Effect of H2S on VOC's reading

PID sensors will response to H2S with response factor of approx. 4

ionscience.com

22 Oct 2018

Effect of Methane

22 Oct 2018

Due to these Phenomena if PID is used to monitor VOC's $\rm H_2S$ and $\rm CH_4$ must be measured

This will:

- i) Validate the PID result Prevent false positive and negatives
- ii) Allow significantly improved calculation of true VOC concentration if H2S and CH4 are present

The following data will demonstrate the importance of this

Installation at Site

Raw data

22 Oct 2018

Processed data

Monitoring Summary

- H₂S and CH₄ are present in the waste water (makes sense as both gases are produced by anaerobic bacteria)
- PID reading will be affected by these
- By understanding how these gasses affect PID reading it is possible to estimate real VOC concentration
- Without this PID reading is meaningless

This allows

- To prevent Health hazards and ensure personal safety!
- Allow optimization of water treatment!
- Indentify if industry is illegally discharging waste water!

Any Questions?

GASCLAM

Specifications 1/2

GAS	TECHNOLOGY	RANGE	RESOLUTION	ACCURACY
CO ₂	Infrared	0-100%	1% above 50% 0.5% below 50%	+/- 2% FSD
CO ₂	Infrared	0-5%	-	-
CH_4	Infrared	0-100%	1% above 50% 0.5% below 50%	+/- 2% FSD
CH_4		0-5%	-	-
02	Electrochemical	0-5%	0.1%	+/-5% of reading +/-1 digit
CO*	Electrochemical	0-2000ppm	1ppm	<+/-3ppm at 0 +/- 5% at 250ppm +/-10% full scale
H ₂ S*	Electrochemical	0-100ppm	1ppm	+/-1 ppm at 0 +/- 2% at 100ppm
VOC*	PID	0-4000ppm	1ppm	+/-5% ppm at 0 +/- 2% at 100ppm
DUAL CO	/H2S			
CO	Electrochemical	0-500ppm	1ppm	<+/-3 ppm at 0 +/- 3% at 250ppm
H ₂ S	Electrochemical	0-200ppm	1ppm	<+/-1 ppm at 0 +/- 2% at 100ppm

GASCLAM

Specifications 2/2

Battery	Lithium ion Alkaline cells Nickel metal hydride	non-rechargeable non-rechargeable Rechargeable	Typical battery life - -	3 months 1 month 3 weeks		
Case material		High quality stainless steel				
Weight		7.5kg (16.8lbs)				
Dimensions		Length Borehole tube length Head diameter Borehole tube diameter	90cm (35.4in) 83cm (32.6in) 11cm (4.3in) 4.7cm (1.85in)			
Ingress protection		IP68 (continuous submersion)				
Operating temperature		-20°C to +50°C (-4°F to 122°F)				
Approvals		EMC, ATEX 0105 X CE Ex II 2G Ex d ib (ib) IIB T4 IECEx Ex d ib (ib) IIB T4 Gb CSA C (US & Canadian approvals) Class 1, Zone 1 (A)Ex d di IIB T4 (Certification pending: Due Jan 2019)				
Patents European and world-wide patented						

Air-Met Scientific

Australian Distributor

OHS & Environmental Monitoring Equipment Specialists

W: www.airmet.com.au

E: sales@airmet.com.au

P: 1800 000 744

F: 1800 000 774

